Symplectic integration approach for metastable systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Integration of Constrained Hamiltonian Systems

A Hamiltonian system in potential form (H(q, p) = p'M~ 'p/2 + E(q)) subject to smooth constraints on q can be viewed as a Hamiltonian system on a manifold, but numerical computations must be performed in R" . In this paper, methods which reduce "Hamiltonian differential-algebraic equations" to ODEs in Euclidean space are examined. The authors study the construction of canonical parametrizations...

متن کامل

Fourth-order Symplectic Integration*

In this paper we present an explicit fourth-order method for the integration of Hamilton’s Equations. This method preserves the property that the time evolution of such a system yields a canonical transformation from the initial conditions to the final state. That is, the integration step is an explicit symplectic map. Although the result is first derived for a specific type of Hamiltonian, it ...

متن کامل

Equivariant Constrained Symplectic Integration

We use recent results on symplectic integration of Hamiltonian systems with constraints to construct symplectic integrators on cotangent bundles of manifolds by embedding the manifold in a linear space. We also prove that these methods are equivariant under cotangent lifts of a symmetry group acting linearly on the ambient space and consequently preserve the corresponding momentum. These result...

متن کامل

Symplectic integration of Hamiltonian systems using polynomial maps

In order to perform numerical studies of long-term stability in nonlinear Hamiltonian systems, one needs a numerical integration algorithm which is symplectic. Further, this algorithm should be fast and accurate. In this Letter, we propose such a symplectic integration algorithm using polynomial map refactorization of the symplectic map representing the Hamiltonian system. This method should be...

متن کامل

Symplectic Integration of Hamiltonian Systems with Additive Noise

Hamiltonian systems with additive noise possess the property of preserving symplectic structure. Numerical methods with the same property are constructed for such systems. Special attention is paid to systems with separable Hamiltonians and to second-order differential equations with additive noise. Some numerical tests are presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal B

سال: 2006

ISSN: 1434-6028,1434-6036

DOI: 10.1140/epjb/e2006-00127-8